7 research outputs found

    Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)

    Get PDF
    ObjectiveResting-state functional magnetic resonance imaging (rs-fMRI) has become an essential measure to investigate the human brain’s spontaneous activity and intrinsic functional connectivity. Several studies including our own previous work have shown that the brain controls the regulation of energy expenditure and food intake behavior. Accordingly, we expected different metabolic states to influence connectivity and activity patterns in neuronal networks.MethodsThe influence of hunger and satiety on rs-fMRI was investigated using three connectivity models (local connectivity, global connectivity and amplitude rs-fMRI signals). After extracting the connectivity parameters of 90 brain regions for each model, we used sequential forward floating selection strategy in conjunction with a linear support vector machine classifier and permutation tests to reveal which connectivity model differentiates best between metabolic states (hunger vs. satiety).ResultsWe found that the amplitude of rs-fMRI signals is slightly more precise than local and global connectivity models in order to detect resting brain changes during hunger and satiety with a classification accuracy of 81%.ConclusionThe amplitude of rs-fMRI signals serves as a suitable basis for machine learning based classification of brain activity. This opens up the possibility to apply this combination of algorithms to similar research questions, such as the characterization of brain states (e.g., sleep stages) or disease conditions (e.g., Alzheimer’s disease, minimal cognitive impairment)

    Impact of Hunger, Satiety, and Oral Glucose on the Association Between Insulin and Resting-State Human Brain Activity

    Get PDF
    To study the interplay of metabolic state (hungry vs. satiated) and glucose administration (including hormonal modulation) on brain function, resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were obtained in 24 healthy normal-weight men in a repeated measurement design. Participants were measured twice: once after a 36 h fast (except water) and once under satiation (three meals/day for 36 h). During each session, rs-fMRI and hormone concentrations were recorded before and after a 75 g oral dose of glucose. We calculated the amplitude map from blood-oxygen-level-dependent (BOLD) signals by using the fractional amplitude of low-frequency fluctuation (fALFF) approach for each volunteer per condition. Using multiple linear regression analysis (MLRA) the interdependence of brain activity, plasma insulin and blood glucose was investigated. We observed a modulatory impact of fasting state on intrinsic brain activity in the posterior cingulate cortex (PCC). Strikingly, differences in plasma insulin levels between hunger and satiety states after glucose administration at the time of the scan were negatively related to brain activity in the posterior insula and superior frontal gyrus (SFG), while plasma glucose levels were positively associated with activity changes in the fusiform gyrus. Furthermore, we could show that changes in plasma insulin enhanced the connectivity between the posterior insula and SFG. Our results indicate that hormonal signals like insulin alleviate an acute hemostatic energy deficit by modifying the homeostatic and frontal circuitry of the human brain

    Five weeks of intermittent transcutaneous vagus nerve stimulation shape neural networks: a machine learning approach

    No full text
    Invasive and transcutaneous vagus nerve stimulation [(t)-VNS] have been used to treat epilepsy, depression and migraine and has also shown effects on metabolism and body weight. To what extent this treatment shapes neural networks and how such network changes might be related to treatment effects is currently unclear. Using a pre-post mixed study design, we applied either a tVNS or sham stimulation (5 h/week) in 34 overweight male participants in the context of a study designed to assess effects of tVNS on body weight and metabolic and cognitive parameters resting state (rs) fMRI was measured about 12 h after the last stimulation period. Support vector machine (SVM) classification was applied to fractional amplitude low-frequency fluctuations (fALFF) on established rs-networks. All classification results were controlled for random effects and overfitting. Finally, we calculated multiple regressions between the classification results and reported food craving. We found a classification accuracy (CA) of 79 % in a subset of four brainstem regions suggesting that tVNS leads to lasting changes in brain networks. Five of eight salience network regions yielded 76,5 % CA. Our study shows tVNS' post-stimulation effects on fALFF in the salience rs-network. More detailed investigations of this effect and their relationship with food intake seem reasonable for future studies

    Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex

    No full text
    The hypothalamus and insular cortex play an essential role in the integration of endocrine and homeostatic signals and their impact on food intake. Resting-state functional connectivity alterations of the hypothalamus, posterior insula (PINS) and anterior insula (AINS) are modulated by metabolic states and caloric intake. Nevertheless, a deeper understanding of how these factors affect the strength of connectivity between hypothalamus, PINS and AINS is missing. This study investigated whether effective (directed) connectivity within this network varies as a function of prandial states (hunger vs. satiety) and energy availability (glucose levels and/or hormonal modulation). To address this question, we measured twenty healthy male participants of normal weight twice: once after 36 h of fasting (except water consumption) and once under satiated conditions. During each session, resting-state functional MRI (rs-fMRI) and hormone concentrations were recorded before and after glucose administration. Spectral dynamic causal modeling (spDCM) was used to assess the effective connectivity between the hypothalamus and anterior and posterior insula. Using Bayesian model selection, we observed that the same model was identified as the most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition enhanced the strength of the forward connections from PINS to AINS and reduced the strength of backward connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS was positively related to plasma cortisol levels in the hunger condition, mainly before glucose administration. However, there was no direct relationship between glucose treatment and effective connectivity. Our findings suggest that prandial states modulate connectivity between PINS and AINS and relate to theories of interoception and homeostatic regulation that invoke hierarchical relations between posterior and anterior insula.ISSN:1053-8119ISSN:1095-957

    Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex

    No full text
    The hypothalamus and insular cortex play an essential role in the integration of endocrine and homeostatic signals and their impact on food intake. Resting-state functional connectivity alterations of the hypothalamus, posterior insula (PINS) and anterior insula (AINS) are modulated by metabolic states and caloric intake. Nevertheless, a deeper understanding of how these factors affect the strength of connectivity between hypothalamus, PINS and AINS is missing. This study investigated whether effective (directed) connectivity within this network varies as a function of prandial states (hunger vs. satiety) and energy availability (glucose levels and/or hormonal modulation). To address this question, we measured twenty healthy male participants of normal weight twice: once after 36 ​h of fasting (except water consumption) and once under satiated conditions. During each session, resting-state functional MRI (rs-fMRI) and hormone concentrations were recorded before and after glucose administration. Spectral dynamic causal modeling (spDCM) was used to assess the effective connectivity between the hypothalamus and anterior and posterior insula. Using Bayesian model selection, we observed that the same model was identified as the most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition enhanced the strength of the forward connections from PINS to AINS and reduced the strength of backward connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS was positively related to plasma cortisol levels in the hunger condition, mainly before glucose administration. However, there was no direct relationship between glucose treatment and effective connectivity. Our findings suggest that prandial states modulate connectivity between PINS and AINS and relate to theories of interoception and homeostatic regulation that invoke hierarchical relations between posterior and anterior insula
    corecore